Hexosamine pathway is responsible for inhibition by diabetes of phenylephrine-induced inotropy.

نویسندگان

  • Yi Pang
  • Pam Bounelis
  • John C Chatham
  • Richard B Marchase
چکیده

Hyperglycemia diminishes positive inotropic responses to agonists that activate phospholipase C (PLC) and generate inositol trisphosphate (1,4,5). The mechanisms underlying both the inotropic responses and hyperglycemia's effects on them remain undetermined, but data from isolated cardiomyocytes suggest the involvement of capacitative Ca(2+) entry (CCE), the influx of Ca(2+) through plasma membrane channels activated in response to depletion of endoplasmic or sarcoplasmic reticulum Ca(2+) stores. In neonatal rat cardiomyocytes, hyperglycemia decreased CCE induced by PLC-mediated agonists. The attenuation of CCE was also seen with glucosamine, and the inhibition by hyperglycemia was prevented by azaserine, thereby implicating hexosamine biosynthesis as the responsible metabolic pathway. In the current study, the importance of hexosamine metabolites to hyperglycemia's effects on inotropic responses was examined in isolated perfused rat hearts. The inhibition by hyperglycemia of phenylephrine-induced inotropy was reversed with azaserine and mimicked by glucosamine. An independent inhibitor of CCE, SKF96365, was also effective in blunting inotropy. These treatments did not inhibit inotropy induced by activation of adenylate cyclase through beta-adrenergic receptors. These data thus implicate CCE in responses to PLC-mediated agonists in the intact heart and point to the hexosamine pathway's negative effect on CCE as being central to the inhibition seen with hyperglycemia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis.

BACKGROUND Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxi...

متن کامل

The in vitro effect of Melissa officinalis aqueous extract on aortic reactivity in rats with subchronic diabetes

Abstract Background and Objective: Vascular abnormality and dysfunction plays an important role in the pathogenesis of vascular disease in diabetic state. In this study, we aimed to investigate whether an in vitro exposure of endothelium-intact aortic rings to Melissa officinalis (lemon balm, MO) aqueous extract could have a beneficial effect in rats with subchronic diabetes. Materials and Meth...

متن کامل

Oxidative Stress Contributions to Chronic Complications in Diabetes

Diabetes Mellitus is a serious global health problem. Both type 1 and type 2 diabetes markedly increase the risk of microvascular and macrovascular complications. Chronic complications of diabetes (retinopathy, nephropathy, neuropathy, and diabetes accelerated arteriosclerosis) represent a major medical and economical concern. Several pathogenic mechanisms were proposed to be responsible for th...

متن کامل

Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets

In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50-60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies su...

متن کامل

Beta-adrenoceptor-mediated responsiveness of human internal mammary artery

The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, pre-operative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since β-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2004